

2019 Marking Scheme

Grade	Mark R	equired	« condidator achieving anada
Awarded	(/ ₁₂₀)	%	% canalates achieving grade
A	80+	66.6%	28.3%
В	67+	55.8%	25.3%
С	54+	45.0%	23.0%
D	47+	39.2%	9.5%
No award	×47	<39.2%	13.9%

Section:	Multiple Choice		Extended A	nswer	Assignment		
Average Mark:	12.1	/20	42.9	/80	13.1	/20	

	2019	9 Hi	gher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	С	86	Hydrogen has electronegativity of 2.2 so the atom with electronegativity closest to 2.2 would be non-polar when joined to hydrogen.
2	В	76	EA CCl ₄ is non-polar due to 3D arrangement of Cl atoms around central C atom D B NH ₃ is a polar molecule due to the electronegativity difference between atoms EC CO ₂ is non-polar due to linear arrangement of O atoms around central C atom ED CH ₄ is non-polar as it is a hydrocarbon. All hydrocarbons are non-polar.
3	A	26	\blacksquare A CO reduces metal ores to metals. CO acting as Reducing Agent \blacksquare B MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ \rightarrow Mn ²⁺ + 4H ₂ O is reduction \therefore MnO ₄ ⁻ acting as oxidising agent \blacksquare C H ₂ O ₂ + 2H ⁺ + 2e ⁻ \rightarrow 2H ₂ O is reduction \therefore H ₂ O ₂ acting as oxidising agent \blacksquare D Cr ₂ O ₇ ²⁻ +14H ⁺ +5e ⁻ \rightarrow 2Cr ³⁺ +7H ₂ O is reduction \therefore Cr ₂ O ₇ ²⁻ acting as oxidising agent
4	С	48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5	В	81	 ☑A Primary Alcohol: 1 carbon directly attached to carbon with the -OH group ☑B Tertiary Alcohol: 3 carbons directly attached to carbon with the -OH group ☑C Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group ☑D Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group
6	A	64	☑A Amino acid with -CH ₃ side group has been removed during partial hydrolysis ⊠B CH-CH ₃ group should be on left of -CH ₂ - group in hydrolysis fragment ⊠C -CH ₂ - group has been removed but two groups are rejoined ⊠D CH-CH(CH ₃) ₂ group should be on right of -CH ₂ - group in hydrolysis fragment
7	D	78	 ☑ A pentyl ethanoate has a total of 7 carbons ∴ cannot have formula C₆H₁₂O₂ ☑ B hexan-2-one has formula C₆H₁₂O so only has 1 oxygen atom not 2 oxygen atoms. ☑ C 3-methylpentan-2-ol has formula C₆H₁₃OH so only has 1 oxygen atom not 2. ☑ D hexanoic acid has formula C₆H₁₂O₂
8	В	29	Primary Alcohols → Aldehydes → Carboxylic acids Hot copper(II) oxide Acidified dichromate solution → Hot copper(II) oxide Acidified dichromate solution acids Secondary Alcohol → Ketone Ketone Ketone Hot copper(II) oxide Acidified dichromate solution Benedict's or Fehling's solution Tollen's Reagent Ketone Ketone Image: A pentan-1-ol is a primary alcohol would oxidise with hot copper(II) oxide to pentanal which would further oxidise with Fehling's solution to form pentanoic acid Image: A pentan-2-ol is a secondary alcohol would oxidise with hot copper(II) oxide to form pentan-2-one which does not react with Fehling's solution. Image: A pentan-3-one is a ketone and does not oxidise with hot copper(II) oxide. Image: C pentan-3-one is a carboxylic acid and does not oxidise with hot copper(II) oxide. Image: A pentanoic acid is a carboxylic acid and does not oxidise with hot copper(II) oxide.
9	D	88	 A molecule has five carbons but not in one continuous chain of five carbons B longest chain containing functional group has three carbons ends in propanoic acid C two separate methyl -CH₃ groups attached to C₂ so is dimethyl not a ethyl -C₂H₅ group. D 2x methyl -CH₃ groups attached to C₂ of three carbon main chain with -COOH group

10	D	72	\blacksquare A Molecule A has 10 carbons and is derived from two C_5 isoprene units joining together \blacksquare B Molecule B has 10 carbons and is derived from two C_5 isoprene units joining together
10	U	/ _	⊠C Molecule C has 10 carbons and is derived from two C₅ isoprene units joining together ☑D Molecule D has 9 carbons so cannot be made by two C₅ isoprene units joining together.
			🗷 A methanol (primary alcohol) oxidises to methanoic acid (carboxylic acid)
11	С	74	区B propanal (aldehyde) oxidises to propanoic acid (carboxylic acid)
	•	•••	D propan-2-ol (secondary alcohol) oxidises to propanone (ketone)
	_		A Primary Amine: 1 carbon directly bonded to nitrogen atom
12	В	92	ビB Secondary Amine: 2 carbons directly bonded to nitrogen atom 区C Tertiary Amine: 3 carbons directly bonded to nitrogen atom
			D Primary Amine: 1 carbon directly bonded to nitrogen atom
13	Ν	36	Formula of Calcium Phosphate = $Ca_3(PO_4)_2$
10	U	50	1mol of $Ca_3(PO_4)_2$ contains 3mol of Ca^{2+1} ions and 2 mol of PO_4^{3-1} ions.
			gtm CH4 = 10g \therefore n 0. of mol = ^{mass} / _{gfm} = ¹ / ₁₆ = 0.25mol A afm He = 4a \therefore n 0. of mol = ^{mass} / _{afm} = ¹ / ₄ = 0.25mol
14	Α	65	E B gfm H ₂ = 2g \therefore n o. of mol = ^{mass} / _{gfm} = ¹ / ₂ = 0.5mol
			$\mathbb{E}C$ gfm N ₂ = 28g \therefore no. of mol = mass/gfm = $\frac{3.5}{28}$ = 0.125mol
			$E D gfm Cl_2 = /1g \therefore no. of mol = mass/gfm = 35.5/7_1 = 0.5mol$
			$MgCO_3 + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O + CO_2$
			1mol 2mol 1mol 1mol 1mol 1mol
			0.05 Mol 0.05 Mol
15	С	59	∴ Nitric acid HNO3 is the limiting factor.
			■ 0.05mol 0.05mol 0.05mol 0.05mol 0.05mol 0.05mol 0.05mol
			⊠B 0.03mol of MgCO3 produced
			✓C 0.03mol of MgCO ₃ reacted ∴ 0.02mol of MgCO ₃ remaining ✓D mitric acid UNO, is the limiting factor as all 0.06mol and up
			\blacksquare A O atom in C=O bonds have δ - charges so will not be attracted to each other
16		61	B C-H bond is non-polar due to similar electronegativity so no dipole
10	U	01	EC C-H bonds are non-polar due to similar electronegativity so no dipoles
	•		mage of useful products (4x55.8) 222.2
17	В	64	atom economy = $\frac{10035 \text{ of user of products}}{1000 \text{ total mass of reactants}} \times 100 = \frac{(+\times 30.8)}{(2\times 159.6) + (3\times 12)} \times 100 = \frac{223.2}{319.2 + 36} \times 100 = 62.8\%$
			$C_{3}H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O(l)$
10	5	10	1mol 5mol 3mol 4mol
18	В	42	1vol 5vol 3vol negligible volume 100cm ³ 500cm ³ 300cm ³ -
			$(+100 \text{ cm}^3 \text{ O}_2 \text{ leftover})$
			Total Volume at end of reaction = $300 \text{ cm}^3 \text{ CO}_2 + 100 \text{ cm}^3 \text{ leftover O}_2 = 400 \text{ cm}^3$
10	D	15	Step 1: 60% of 100% = $\frac{60}{100} \times 100\%$ = 60%
17	D	ΤĴ	Step 2: 90% of 60% = $\frac{90}{100}$ × 60% = 54%
			A Volume of gas must be reduced as volume of acid is reduced (zinc in excess)
20	С	50	IN Initial Rate of reaction must be increased as lumps replaced by powder
			Image: A standard and and a standar

21	A	70	$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$ $\Delta H_2 = \Delta H_1 - \Delta H_3 - \Delta H_4$ b = a - c - d $\Delta H_2 = b$ $\Delta H_2 = b$ $\Delta H_2 = b$ $\Delta H_3 = c$
22	D	85	 A Higher Activation Energy will make a successful collision less likely to happen. B The higher the kinetic energy of reactants the more like the collision will have sufficient energy to react. C Higher the concentration the higher the likelihood of a successful collision D Whether a reaction is exothermic or endothermic has no bearing on the reaction rate.
23	С	71	 A no change in pressure from reactants to products lowering pressure has no effect B lowering pressure favours pressure increasing reaction (reverse reaction) C lowering pressure favours pressure increasing reaction (forward reaction) D lowering pressure favours pressure increasing reaction (reverse reaction)
24	A	71	☑A Increasing the temperature moves the curve to the right. ☑B Increasing the temperature moves the curve to the right not the left. ☑C E _a does not change when temperature is changed ☑D Area under curve should be same as same number of particles.
25	D	47	$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} C \xrightarrow{CH_{3}} C$

2	019 Highe	r Chemistry Marking Scheme				
Long Qu	Answer	Reasoning				
1 a(i)	Answer showing:	Na2S2O3 + 2HCl S + SO2 + 2NaCl + H2O				
1a (ii) Part A	A 0 B 10 C 20 D 30 E 40	For the concentration of thiosulphate to be varied, the total volume of the solution must be kept constant. The total volume of sodium thiosulphate solution and water is 50 cm ³ in each experiment.				
1a (ii) Part B	35.1	Rate = $\frac{1}{\text{Time}}$ time = $\frac{1}{\text{Rate}}$ = $\frac{1}{0.0285}$ = 35.1s				
1a (iii)	12±1	For doubling of rate from $0.02s^{-1}$ to $0.04s^{-1}$ Temperature at $0.02s^{-1} = 44^{\circ}C$ Temperature at $0.04s^{-1} = 56^{\circ}C$ Change in temperature = $12^{\circ}C$				
1b	Sufficient Energy to React And Correct Geometry	1st Mark: sufficient or enough energy energy equal to or greater than the activation energy minimum/ enough energy to form an activated complex 2nd Mark: (Collision must occur with) suitable/correct/geometry/orientation				
1 c(i)	X at peak on curve	The top of the hill (peak on the curve) is the activated complex where the bonds of the reactants are half broken and the bonds of the products are half formed.				
1c(ii)	potential energy (kJ mol')	A catalyst lowers the activation energy without changing the position of the reactants or products. This means that the top of the hill is lowered. The enthalpy change is the same as the positions of the reactants and products are unchanged.				
2 a (i)	Increasing number of protons or increasing nuclear charge	Going across a period does not increase the size of an atom as it is the same outer shell which is being filled up. The increased positive charge in the nucleus attracts the outer shell into more as you go across a period.				
2a (ii)	One answer from:	Increased screening/shielding Covalent radius increases Covalent radius increases Atom size increases Outer electron decreases				
2b(i)	$N^{*}(g) ightarrow N^{2*}(g)$ + e^{-}	1 st Ionisation Energy: The removal of one mole of electrons from one mole of atoms in the gaseous state. 2 nd Ionisation Energy: The removal of one mole of electrons from one mole of 1+ ions in the gaseous state.				
2b(ii)	Answer to Include:	1st Mark: The 6th ionisation energy involves removing an electron from the shell which is full/ stable/closer to the nucleus the 6th electron is removed from the electron shell which is inner/full/ stable/closer to the nucleus 2nd Mark: The 6th electron is less shielded or				
2c	<u>1st Mark</u> : Al forms Al ³⁺ ion P forms P ³⁻ ion <u>2nd Mark</u> : P ³⁻ ion has one more electron shell than Al ³⁺ ion	Phosphorus atoms have electron arrangement of 2,8,5 and form P ³⁻ ions which have electron arrangement of 2,8,8 Aluminium atoms have electron arrangement of 2,8,3 and form Al ³⁺ ions which have electron arrangement of 2,8 Phosphide P ³⁻ ion has one more electron shell than aluminium Al ³⁺ ion.				
2d	Radius Ratio = 0.96 Caesium Chloride Structure	Radius ratio = $\frac{\text{Radius of positive ion}}{\text{Radius of negative ion}} = \frac{135}{140} = 0.96$				

		3 mark answer Demonstrates a <u>good</u> understanding of the chemistry	2 mark answer Demonstrates a <u>reasonable</u> understanding of the chemistry	1 mark answer Demonstrates a <u>limited</u> understanding of the chemistry					
3	Open Question Answer to Include:	involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.					
4a (i)	Biological catalyst	An enzyme is a protein w inside living things.	An enzyme is a protein which acts as a catalyst for the chemical reactions nside living things						
4 a(ii)	4.5	Mass of cider = 1.36g/cm ³ × 50cm ³ %mass of alcohol = Mass of alcohol = Mass of cide	Nass of cider = 1.36g/cm ³ × 50cm ³ = 68g %mass of alcohol = <u>Mass of alcohol</u> ×100 = <u>3.05</u> ×100 = 4.48% Mass of cider						
4 b(i)	Carbon dioxide	Malic acid C₄H6O₅	→ Lactic Aci → C ₃ H ₆ O ₃	d + X + CO ₂					
4b(ii) Part A	0.25	R _f = <u>Distan</u> Dista	ce moved by substance = - ince moved by solvent	$\frac{4.1}{16.4}$ = 0.25					
4b(ii) Part B	Sample 4 or Cider B	Problem Solving: Cider B/ spot at 4.1 indicating all t	Sample 4 is the only cic the malic acid has turne	ler that has no malic acid d into lactic acid					
4c	Propane-1,2,3-triol	,2,3-triol H H H H H - C - C - C - H OH OH OH glycerol 3 carbons Single bonds between carbons		Functional groups on Carbons 1,2,3 ,2,3-triol 3 hydroxyl -OH groups					
Ada	Answer to include:	1 st Mark: Molecule is hydroxy	polar due to Can fo I groups	orm hydrogen bonds due to hydroxyl groups					
	Answei To Include.	2 nd Mark: Solubility inc	reases as more polar hy (and increases hydroge	droxyl groups are added :n bonding)					
4d(ii)	2-methylbutanoic acid	H H H O H—C—C—C—O— H H CH ₃ ethyl 2-methylbut	Н Н -с—с—н → H H anoate + H₂O	$H H H O$ $H H H O$ $H H O$ $H H O$ $H - C - C - C - C - C - O - H$ $H + CH_{3}$ 2-methylbutanoic acid $+$ $H - O - C - C - H$ $H - H$ $H - O - C - C - H$ $H - H$ $H - O - C - C - H$ $H - H$ $H - O - C - C - H$ $H - H$ $H - O - C - C - H$ $H - H$ $H - H$ $H - H$ $H - H$					
4d(iii)	2-methylbuta-1,3-diene or isoprene	H; H; 2-r	2 C C C C C C C C C C C C C C C C C C C	H2 iene					
4e (i)	Carbonyl	O II - C C carbonyl group car	D O U O U O U O O O O O O O O O O O O O	- H C-C-C					

4 <i>e</i> (ii)	Ethanoic acid	Primary Alcohol	→ Aldehyde	Carboxylic acid					
		Ethanol —		Ethanoic acid					
		Bond Breaking Step		Sond Forming Steps					
		4xC-H bonds 4x 412kJ = 1 2xO=O bond 2x 498kJ =	1648kJ 2xC=O bonds 996kJ 4xO-H bonds	2x 743kJ = 1486kJ 4x 463kJ = 1852kJ					
F	101	Total bond breaking = 2	2644kJ Total bond Formi	ng = 3338kJ					
5a (i)	-694	Enthalpy change = +2644 - 3	3338 = -694kJ mol ⁻¹						
		$\Delta H = \Sigma Bond enthalpies$	s for bonds broken - ΣBond	enthalpies for bonds formed					
		$\Delta H = -694 I$	<j mol<sup="">-1</j>	3330					
-		Mean bond enthalpy is an	average energy from a n	umber of compounds					
5a (ii)	Answer to include:	Bond enthalpy relates to	only one particular compo	ound or molecule.					
			Volume 0.200litr	es o o o o o o o o o o o o o o o o o o o					
		no. of moles = Mo	olar Volume = 24 litres m	$\frac{1}{10000000000000000000000000000000000$					
5	0.2/7	$(H_{4(a)} + 2O_{2})$	\rightarrow $(0_2$	$(a) + 2H_2O(b)$					
5((ii))	0.367	1mol 2mol	y) COZ 1mol						
		0.00833mol	0.00833r	nol					
		mass = no. of mol × gfm =	0.00833 x 44 = 0.367g						
	Decord the mace of human	The before and after ma	sses of the spirit burner	(including lid) are					
5b(i)	before and after heating	needed to calculate the c	hange in mass of the spir	rit burner and this					
		change in mass is the mas	ss of heptane burned.						
		Heat Energy 🚊 Specif	ic Heat Capacity 🗙 Mass	X Change In Temperature					
		F. =	c x m	× AT					
		$E_{h} = 4.18$	$KJ Kg^{-1}C^{-1} \mathbf{X} = 0.4 Kg$	X 23°C					
5b(ii)	-3496	$E_{h} = 38.456 \text{ kJ}$							
		gfm Heptane C7H16 = (7x12) + (16x1) = 84 + 16 = 100g							
		1.1g hept	ane 🔸 🔶 38.456k.	J					
		1mol heptane = 100g heptane							
		= -3496kJ mol ⁻¹							
5h(iii)	One answer from:	Loss of heat to surro	undings Incomplete com	oustion Loss by evaporation					
50(m)		Absorption of heat by glass	s/beaker/can No stirring	No lid on container					
600	Same number of	Both molecules have iden	tical number of electrons	; (34) so have the same					
οα(ι)	electrons or Same	ability to form London Di	spersion forces between	molecules (due to					
Part A	strength of LDF	between the molecules m	ist he caused by other in	termolecular forces					
		1 st Propan-1-ol has stronger	intermolecular Intermolecular	forces in propan-1-ol take more					
6a (i)	Answer to include:	mark: forces than etha	nethiol energy to bre	ak than those in ethanethiol					
Part B	Answei to include:	2 nd Intermolecular bonds i mark: ethanethiol a	n propan-1-ol are hydrogen bonds re permanent dipole to permanent	and intermolecular bonds in the transformer of the					
		Alkane: Methane CH	LA Ethone C2H6	Propone C3H8					
6a (ii)	methanethiol	Thiol: Mathanethiol Ch	H3SH Ethanethiol C2H5SH	1 Propanethiol C3H7SH					
		1cm³ air ◀	→ 2.7×10 ⁻⁷ mg						
6a (iii)	11.853mg	1 litre air 🗲	→ 2.7×10 ⁻⁴ mg						
00()		43900 litres air 🗲 🚽	\rightarrow 2.7x10 ⁻⁴ mg x ⁴³⁹⁰⁰ / ₁ =	11.853mg or 0.0118g					
		Primary Thiol	Secondary Thiol	Tertiary Thiol					
	-SH aroun is attached to	-SH group attached to carbon	-SH group attached to carbon	-SH group attached to carbon					
6h(i)	carbon which is attached	which is attached to 0 or 1 other carbons atoms	which is attached to 2 other carbon atoms	which is attached to 3 other carbon atoms					
	to 3 other carbons	-SH group attached to carbon	-SH group attached to carbon	-SH group attached to carbon					
		which is attached to 2	which is attached to 1	which is attached to no					
1	1	nyurogen atoms.	nyurugen utom.	nyurugen utoms.					

6b(ii) Part A	Н Н SH H—С—С—С—Н H CH ₃ H	H H SH H H CH3 H
6b(ii) Part B	41.2	2-methylpropene + hydrogen sulphide 1mol 56.0g 30.5g %Yield = $\frac{Actual}{Theoretical} \times 100$ \therefore Actual = $\frac{\% \text{ Yield x Theoretical}}{100}$ = $\frac{84 \times 49.07}{100}$ = 41.2g
7 a (i)	Propagation	Step Reactants (before Arrow) Products (after Arrow) Initiation No free radicals on Reactant Side Free radicals on Product Side Propagation Free Radicals found on both sides of arrow Termination Free radicals on Reactant Side No free radicals on Product Side
7a (ii)	uv/ultraviolet	Ultraviolet light can cause the formation of free radicals as energy in the uv light can cause bonds to split and the two electrons in the bond separate one to each side. This means there are unpaired electrons which are called free radical. This breaks the plastic down in to smaller chunks that can be digested by bacteria.
7a(iii)	Anti-oxidant or Free Radical Scavenger	Free Radical Scavengers and anti-oxidants quickly react with any free radical particles going and prevent future propagation steps which would prolong the breakdown of the plastics.
7b(i)	Water/H2O	5-hydroxypentanoic acid = $C_5H_{10}O_3$ lactone = $C_5H_8O_2$ Difference = H_2O
7b(ii)	H ₃ C CH H ₂ C CH ₂ C CH ₂ O	One less carbon between Carboxyl -COOH group and Hydroxyl group ∴One less carbon in lactone ring i.e. ring has 4 carbons plus 1 oxygen in ring Carbon with hydroxyl -OH group has methyl -CH₃ group sticking off it ∴Methyl -CH₃ group sticking off C on other side of -O-C=O ester group
7b(iii)	3-hydroxybutanoic acid	-OH on C3 -OH group -OH side group -OH side main chain -OH functional group

		amin acio 1	io 1	amino acid 2	amir acio 3	o I	amino acid 4	am ac	iino cid 5	amin acic 6	o I
8a (i)	6	H H 		H H 		0 H C N C N C C C C C C C H C C H	O U CH-C- CH-C- CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH NH NH ₂			H H 	$ \begin{array}{c} 0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
8a (ii)	London Dispersion Forces	There are thr all substances permanent dip	ee form: but are	s of van c the weak actions ar	ler Waals est form re strong	' Attrac of inter er than	tion. Londo rmolecular London Dis	on Disper attracti spersion	rsion ford on. Permo Forces ar	ces are t anent dij 1d Hydro	found in pole to ogen
		Bonding is the	stronge	st form o	of van de	• Waals'	attraction	1.	<u>.</u>	·	5
8b(i)	Answer to include:	1 st Mark: 2 nd Mark: 3 rd Mark:	Dissol [;] Trans Fill to	ve gelat fer quai the ma	tin (in s ntitativ rk/line	nall vo ely/wi [.] (on vol	lume of th rinsin lumetric	deionis gs/with /stando	ed wate n washii ard flas	er) ngs sk)	
8b(ii)	11.0	Concentration Viscosity (units Difference Prediction (units)	1 (%) ;)	2.0 1.0	1.0	.0 .0 2	6.0 4.0 .0	3.0	8.0 7.0	(4.0)	10.0 (-)
8c(i)	Enzyme Changes shape or denatured	Enzymes are specifically shaped globular proteins which denate Denaturing is caused by the 3D structure of the protein in the This 3D structure is held by various types of bonding e.g. hydr the enzyme has changed shape, the substrate molecule no long		nature w the enzy ydrogen onger fit	hen he yme cho bondin ts the e	ated. anging. g. Once enzyme					
8c(ii)	37.88	13.2mg bro 500mg bro	melain melain	•	→ 1g pineapple → 1g x ⁵⁰⁰ / _{13.2} = 37.88g						
9a (i)	+220±2	Activation R to NB: Activa	Energy o Activ tion en	(forwa ated Co ergy ar	rd read omplex : e alway	reaction) is measure from: plex = 220 - 0 - +220kJ mol ⁻¹ always endothermic with a positive value					
9a (ii)	One Answer from:	Favours the revers	e endoth e reactio	ermic/	(Foi	'ward) r exothe	eaction is rmic	Reverse reaction is			
9b	Diagram showing:	workable me	thod for pass th	r removal arough wa	of HCl bi ter (1mai er	ıt allowi k)	ng Cl ₂ to	workat	in the second se	od to col ark) Syr	lect gas
9с	-391	0 0 6 0 4 0'+(D 9 5 5 8 7 9 ×4 8 9 9 9 9	C C ≟H₂ 2H₂ CH₄	+ 2H; + 2Cl; + ½Cl + ½Cl; + 2Cl; + 2Cl; + 4Cl;	$ \begin{array}{c} \rightarrow \\ $	CH₄ CCl₄ HCl C + CCl₄ 4HCl CCl₄ +	2H₂ 4HCl	ΔH=-75 ΔH=-98 ΔH=-92 ΔH=-75 ΔH=-75 ΔH=-98 ΔH=-363	i kJ mol kJ mol kJ mol kJ mol kJ mol kJ mol kJ mol	-1 -1 -1 -1 -1 -1 -1 -1

10a	Tap water contains metal ions/salts which are not found in deionised water	The tap water used might contained chloride ions or magnesium ions which would alter the concentration of either ions in the final solution. Deionised water or distilled water are free from ions.
10b(i)	Pipette Measuring cylinder	Pipettes are the most accurate method of transferring accurate volumes of solutions. Measuring cylinders do not provide an accurate measurement of volume, only approximate volumes
10b(ii)	E C B D A 1 st 2 nd 3 rd 4 th 5 th Step Step Step Step Step	E Weigh the filter paper C Filter the precipitate B Wash the precipitate with water to remove any impurities D Dry the precipitate in an oven A Weigh the precipitate and the filter paper
10b(iii)	0.463	no. of mol = $\frac{mass}{gfm}$ = $\frac{1.393}{143.3}$ = 0.00972mol MgCl _{2(aq)} + 2AgNO _{3(aq)} \rightarrow 2AgCl _(s) + Mg(NO ₃) _{2(aq)} 1mol 2mol 0.00486mol 0.00972mol mass = no. of mol × gfm = 0.00486 × 95.3 = 0.463g
10c	96.0	% purity = $\frac{\text{mass of pure sample}}{\text{mass of impure sample}} \times 100 = \frac{2.403}{2.503} \times 100 = 96.0\%$
11	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.
12a(i)	Ionic Positively charged	Compound A has polar bonds which have permanent dipoles to allow interaction with water molecules. Compounds B+C have ionic charges which allow these compounds to interact with water.
12a(ii) Part A	Alkaline hydrolysis or saponification	Alkali will hydrolyse fats/oils into glycerol and three fatty acids. The alkali will then neutralise the fatty acids to form salts which act as soaps.
12a (ii) Part B	Answer to Include:	1st Mark ionic/hydrophilic part and a non-polar/hydrophobic part to molecule 2nd Mark Head/COO ⁻ part of the molecules dissolves in water (hydrophilic) Tail/hydrocarbon chain part of molecule dissolves in oil (hydrophobic) 3rd Mark Agitation cause small oil droplets to form 3rd Mark The (negatively-charged) ball-like structures repel each other Soap/compound C allow emulsions to form or break oil into micelles.
12a(iii)	React edible oil with glycerol	Edible oils can form an ester link with the hydroxyl -OH group on a glycerol (propane-1,2,3-triol). The emulsifier has a hydrophobic tail from the edible oil that has just joined on and has hydrophilic hydroxyl -OH groups.
12b(i)	One answer from:	Both nuclei have the same attractionBoth atoms have sameBonding electronsfor the bonding electronselectronegativityshared evenly
12b(ii)	One answer from:	To ensure all chlorine is used up/to prevent chlorine being releasedNaOH is the cheaper/less expensive reactantTo ensure that the bleach cleaner contains sodium hydroxideExcess NaOH would neutralise any acid added to cleanerExcess NaOH helps break up oil/grease
12c	Answer to include:	1st Mark:Adding acid increases in the number of H* ions2nd Mark:Rate of Forward Reaction increases (to reduce concentration of H* ions by turning them into products)
12d(i)	OCI ⁻ + 2H⁺ + 2e ⁻ ↓ CI ⁻ + H₂O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		no. of mol = volume x concentration = 0.0090 litres x 0.098 mol t ⁻¹ = 8.82×10^{-4} mol
12d(ii)	1.76×10 ⁻² or 0.0176	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{4.41 \times 10^{-4} \text{mol}}{0.025 \text{ litres}}$ = 1.76×10 ⁻² mol l ⁻¹